Venue SN church - Thermopro loggers

Venue SN church - Thermopro loggers#

Venue SN was able to deploy a bunch of Thermopro TP357s at once. The diary is approximate - we have a specific diary for Christmas week and then just a fairly typical week, but only recorded over an atypical period. The New Year’s midnight heating is for people in the space, just not in the diary.

You can get a line to disappear by clicking on it in the legend, sweep out part of the plot to zoom in, and so on.

Hide code cell source
# Using plotly.express

plot_height = 800
plot_width = 1000

venue_data_dir = "./venue-SN/"
venue_temp_data_dir = "thermopro/" 
weather_data_dir = "./weather_data/"

temp_filenames = ['1.csv', '2.csv' ,'3.csv', '4.csv' ,'5.csv',   '9.csv']
            
location_labels= ["1 - chancel","2 - priests' vestry","3 - mid-pews right", "4 - mid-pews left","5 - church back left", "9 - pulpit"]
weather_location_labels = ["2 - priests' vestry","3 - mid-pews right"]

#main_location_label = "1" # used to plot against weather data.
use_diary_filepath = venue_data_dir + "use_diary-church.csv"
heating_timings_filepath =  venue_data_dir + "heating_timings.csv"
weather_filepath = weather_data_dir + "gcht2024_weather_data.csv"



# import ipywidgets as widgets
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go   
import os as os
from datetime import datetime as dt

list_of_temp_traces = []
list_of_rh_traces = []
list_of_traces_for_weather_comparison = []
dfHeatTimes = pd.DataFrame()
dfUseDiary = pd.DataFrame()

if os.path.isfile(use_diary_filepath):
    dfUseDiary = pd.read_csv(use_diary_filepath)
    dfUseDiary = dfUseDiary.fillna('')
    dfUseDiary['annotation_position'] = dfUseDiary['annotation_position'].replace(to_replace="", value="top left")
    dfUseDiary['start'] = pd.to_datetime(dfUseDiary['startUse'])
    dfUseDiary['end'] = pd.to_datetime(dfUseDiary['endUse'])
    #print(dfUseDiary) 

if os.path.isfile(heating_timings_filepath):
    dfHeatTimes = pd.read_csv(heating_timings_filepath)
    dfHeatTimes = dfHeatTimes.fillna('')
    dfHeatTimes['start'] = pd.to_datetime(dfHeatTimes['startHeat'])
    dfHeatTimes['end'] = pd.to_datetime(dfHeatTimes['endHeat'])

# find some useful limits for rendering the weather data
  
end = dt.strptime("1970-01-01 00:00", '%Y-%m-%d %H:%M')
start = dt.strptime("2030-01-01 00:00", '%Y-%m-%d %H:%M')

for temp_filename,location_label in zip(temp_filenames,location_labels):
    df = pd.read_csv(os.path.join(venue_data_dir, venue_temp_data_dir, temp_filename),encoding='utf-8-sig', usecols=[0,1,2], header=2, names=[ 'time','temperature','rh'])
    df["timestamp"] = pd.to_datetime(df['time'], dayfirst=True)
    df = df.fillna('')
    # check whether this changes required range for weather data
    start_time_in_file = df['timestamp'].min() 
    end_time_in_file = df['timestamp'].max()
    if start_time_in_file < start:
            start = start_time_in_file
    if end_time_in_file > end:
            end = end_time_in_file
    
    trace = go.Scatter(customdata=df, 
                        y=df['temperature'], 
                        x = df['timestamp'], 
                        mode='lines', 
                        hoverinfo='all', 
                        name=location_label,
                        )
    list_of_temp_traces.append(trace)
    

    # take one of the less wild traces and add it to plot it against the weather.
    if (location_label in weather_location_labels):
        list_of_traces_for_weather_comparison.append(trace)
    
    trace = go.Scatter(customdata=df, 
                        y=df['rh'], 
                        x = df['timestamp'], 
                        mode='lines', 
                        hoverinfo='all', 
                        name=location_label,
                        )
    list_of_rh_traces.append(trace)

# create a trace for the weather data

df = pd.read_csv(weather_filepath,encoding='latin-1',usecols=[0,1], header=1, names=[ 'time','temperature'])
df["timestamp"] = pd.to_datetime(df['time'])
df = df.fillna('')
# removing unuseful weather data
df = df[(df['timestamp'] > start) & (df['timestamp'] < end)]

trace = go.Scatter(customdata=df, 
                        y=df['temperature'], 
                        x = df['timestamp'], 
                        mode='lines', 
                        hoverinfo='all', 
                        name="outside",
                        )

list_of_traces_for_weather_comparison.append(trace)
 

temp_g = go.FigureWidget(data=list_of_temp_traces,
                    layout = go.Layout(
                        #yaxis=dict(range=[-6,25])
                    ))



rh_g = go.FigureWidget(data=list_of_rh_traces,
                    layout = go.Layout(
                        yaxis=dict(range=[0,100])
                    ))


weather_g = go.FigureWidget(data=list_of_traces_for_weather_comparison,
                    layout = go.Layout(
                        yaxis=dict(range=[-6,25])
                    ))



temp_fig = go.Figure(temp_g)
temp_fig.update_layout(showlegend=True, 
              autosize = True, 
              title= "Temperature (deg C))",
              width=plot_width, 
              height=plot_height,
)

# example syntax for two plots on same x-axis - I'd like to show the boiler temperature in
# parallel - but havne't had time to sort the syntax.
#temp_fig = make_subplots(rows=2, cols=1, shared_xaxes=True)

# for i, col in enumerate(cols, start=1):
#     fig.add_trace(go.Scatter(x=df[col].index, y=df[col].values), row=i, col=1)

rh_fig = go.Figure(rh_g)
rh_fig.update_layout(showlegend=True, 
              autosize = True, 
              title= "Relative Humidity (%RH)",
              width=plot_width, 
              height=plot_height,
)

weather_fig = go.Figure(weather_g)
weather_fig.update_layout(showlegend=True, 
              autosize = True, 
              title= "Indoor vs outdoor temperature from weather station (deg C))",
              width=plot_width, 
              height=plot_height,
)

temp_fig.update_layout(
    hovermode='x unified',
    hoverlabel=dict(
        bgcolor="white",
        # font_size=16,
        font_family="Rockwell"
    )
)

#Add range slider
temp_fig.update_layout(
    xaxis=dict(
        rangeselector=dict(
            buttons=list([
                dict(
                     label="All",
                     step="all"
                     ),
                dict(count=1,
                     label="Hour",
                     step="hour",
                     stepmode="todate"),
                dict(count=1,
                     label="Day",
                     step="day",
                     stepmode="backward"),
                dict(count=7,
                     label="Week",
                     step="day",
                     stepmode="backward"),
                dict(count=1,
                     label="Year",
                     step="year",
                     stepmode="backward")
            ])
        ),
        rangeslider=dict(
            visible=True,
        ),
        type="date"
    )
)

for ind in dfUseDiary.index:
    temp_fig.add_vrect(x0=dfUseDiary['start'][ind], x1=dfUseDiary['end'][ind],
                annotation_text=dfUseDiary['label'][ind], 
                annotation_position=dfUseDiary['annotation_position'][ind],
                annotation=dict(font_size=14, 
                font_family="Times New Roman"),
                fillcolor="green", 
                opacity=0.25, 
                line_width=0)
        

for ind in dfHeatTimes.index:
    temp_fig.add_vrect(x0=dfHeatTimes['start'][ind], x1=dfHeatTimes['end'][ind])
 

temp_fig.show()

rh_fig.update_layout(
    hovermode='x unified',
    hoverlabel=dict(
        bgcolor="white",
        # font_size=16,
        font_family="Rockwell"
    )
)

#Add range slider
rh_fig.update_layout(
    xaxis=dict(
        rangeselector=dict(
            buttons=list([
                dict(
                     label="All",
                     step="all"
                     ),
                dict(count=1,
                     label="Hour",
                     step="hour",
                     stepmode="todate"),
                dict(count=1,
                     label="Day",
                     step="day",
                     stepmode="backward"),
                dict(count=7,
                     label="Week",
                     step="day",
                     stepmode="backward"),
                dict(count=1,
                     label="Year",
                     step="year",
                     stepmode="backward")
            ])
        ),
        rangeslider=dict(
            visible=True,
        ),
        type="date"
    )
)


#fig.add_hline(y=16, annotation_text='16C - usual minimum for children', annotation_font_color="blue", line_color='red', layer='above', line_dash='dash')
# fig.update_yaxes(range = [-5, dfCollatedDataSet['temperature'].max()+5])
rh_fig.show()

weather_fig.update_layout(
    hovermode='x unified',
    hoverlabel=dict(
        bgcolor="white",
        # font_size=16,
        font_family="Rockwell"
    )
)

#Add range slider
weather_fig.update_layout(
    xaxis=dict(
        rangeselector=dict(
            buttons=list([
                dict(
                     label="All",
                     step="all"
                     ),
                dict(count=1,
                     label="Hour",
                     step="hour",
                     stepmode="todate"),
                dict(count=1,
                     label="Day",
                     step="day",
                     stepmode="backward"),
                dict(count=7,
                     label="Week",
                     step="day",
                     stepmode="backward"),
                dict(count=1,
                     label="Year",
                     step="year",
                     stepmode="backward")
            ])
        ),
        rangeslider=dict(
            visible=True,
        ),
        type="date"
    )
)


for ind in dfHeatTimes.index:
    weather_fig.add_vrect(x0=dfHeatTimes['start'][ind], x1=dfHeatTimes['end'][ind])

#fig.add_hline(y=16, annotation_text='16C - usual minimum for children', annotation_font_color="blue", line_color='red', layer='above', line_dash='dash')
# fig.update_yaxes(range = [-5, dfCollatedDataSet['temperature'].max()+5])
weather_fig.show()